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A B S T R A C T

Advancements in the development of deep learning and computer vision-based approaches have the potential to
provide managers and engineers with the ability to improve the safety performance of their construction op-
erations on-site. In practice, however, the application of deep learning and computer vision has been limited due
to an array of technical (e.g., accuracy and reliability) and managerial challenges. These challenges are a product
of the dynamic and complex nature of construction and the difficulties associated with acquiring video sur-
veillance data. In this paper, we design and develop a deep learning and computer vision-based framework for
safety in construction by integrating an array of digital technologies with multiple aspects of data fusion. Then,
we review existing studies that have focused on identifying unsafe behavior and work conditions and develop a
computer-vision enabled framework that: (1) considers current progress on computer vision and deep learning
for safety; (2) identifies the research challenges that can materialize with using deep learning to identify unsafe
behavior and work conditions; and (3) can provide a signpost for future research in the emergent and fertile area
of deep-learning within the context of safety.

1. Introduction

Worldwide construction is one of the most dangerous industries as
people are susceptible to workplace accidents, injuries, and even
fatalities. Approximately 7% of the world's workforce is employed in
construction; however, the industry accounts for 30–40% of workplace
fatalities [86]. According to the Occupation Safety and Health Admin-
istration (OSHA) in the United States, for example, a total of 991 people
have been killed while working on construction sites since 2006 [1].
Across the Atlantic Ocean in the United Kingdom, fatalities are also a
problem in construction accounting for a total of 29.86% of all work-
place accidents [2,3]. In China, a total of 3843 fatal injuries were re-
corded in 2017 on construction sites, which has resulted in the industry
being identified as the most hazardous in the country [4]. Notably,
more than 90% of accidents are due to unsafe behavior and work
conditions. It, therefore, follows that if we can moderate people's unsafe
behavior and improve work conditions, then safety performance will
naturally improve.

Technological developments aided by computer vision have been
identified as a robust approach to automatically identify and recognize

unsafe behavior and conditions [5–11]. As a result, a rich collection of
images of people's actions and the work conditions that contribute to
unsafe events have been accumulated [9–11]. From an engineering
perspective, computer vision aims to automate tasks that the human
visual system is unable to perform. The ability to automate tasks has
been enhanced by deep learning (also known as deep structured
learning or hierarchical learning). In particular, Convolutional Neural
Networks (CNN), a class of deep learning networks, have been used for
analyzing visual imagery (e.g., processing images and video) and
overcoming the issues associated with the manual observation and re-
cording of hazards (i.e., potential sources of harm) on construction
sites.

While attention has been placed on the use of deep learning and
computer vision to monitor the safety behavior and identify unsafe
conditions on construction sites, there has been no state-of-the-art re-
view that has examined its development and potential use in the future.
A review is needed to determine the current limitations of deep learning
and computer vision in construction. Furthermore, there is a need to
identify the recurrent problems that researchers are confronted with
during its implementation to manage safety. The upshot of performing
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such a review is to provide a pathway to ensure that future research
provides a robust theoretical underpinning to be developed, and has
relevance to practice.

Our review draws on developments that have been made in
Artificial Intelligence (AI) in construction and other domains (e.g.,
autonomous vehicles). The review is used to design and develop a deep
learning and computer vision-based framework. Our framework in-
tegrates digital technologies and multiple aspects of data fusion, which
can be used to improve safety performance. The technologies that we
have selected to develop our framework complement each other as
evident in their widespread use to support the implementation of
Industry 4.0.

We commence our paper by providing a setting for deep learning in
computer vision and the nature of unsafe behavior and conditions that
manifest on construction sites. Then, we review existing studies that
have focused on identifying unsafe behavior and conditions in ac-
cordance with our enabling framework by placing emphasis on: (1) the
existing progress on computer vision and deep learning for safety; (2)
identifying the research challenges that can materialize when using
deep learning to identify unsafe behavior and work conditions; and (3)
providing a signpost for future research in the emergent and fertile area
of deep-learning within the context of safety.

2. Understanding computer vision and deep learning

Within the field of computer science, machine learning, which is a
subset of AI [12], has been applied widely to areas such as speech re-
cognition [13], natural language processing [14], robot control [15]
and computer vision [16]. Conventional machine learning approaches
are limited in their ability to process data in their raw form [17]. The
inability to process data arises because a considerable amount of en-
gineering and domain knowledge is required to design a feature ex-
tractor [17: p.446].

Deep learning is a representation method that can be used to extract
sophisticated features at high levels of abstraction automatically. This
method can also learn from data with multiple levels of end-to-end
representations [17]. By combining deep learning methods (e.g., neural
networks) with computer vision, image features can be automatically
extracted and used to learn from training data. One particular type of
deep learning method that has been widely used is the CNN, as it has
been able to accurately and reliably outperform other deep neural
networks in areas such as image classification [18], object detection
[19], and segmentation [20]. Deep learning has enabled developments
in computer vision-based applications to thrive [21–23], for example,
(1) autonomous vehicles [21]; and (2) automatic diagnosis of breast or
skin-cancer [22]. In light of such developments, we suggest that deep
learning and computer vision approaches can potentially provide us
with the much-needed visual insights to accurately and reliably un-
derstand the nuances of tasks that are performed during the construc-
tion process. As a result, we will be able to identify the unsafe behavior
and conditions that manifest by comparing information that is acquired
with our existing hazard knowledge.

3. An Enabling Framework of Computer Vision-based for Safety

3.1. Unsafe behavior and condition monitoring tasks

Within the context of safety, we put the spotlight on unsafe behavior
and the conditions that pervade practice on construction sites con-
cerning standards and regulations in China (Fig. 1, source from Baidu).
It has been observed that 88% of the accidents that occur on con-
struction sites are due to unsafe behaviors and with 10% being attri-
butable to unsafe work conditions [24]. The most common types of
unsafe behavior identified on construction sites are [5,25–30]: (1)
failure of personal protective equipment (PPE); (2) exposure to a ha-
zardous area; and (3) failure to follow safety procedures.

Drawing on accident statistics produced by bodies such as the China
State Administration of Work Safety, we can observe that unsafe work
conditions are primarily attributable to: (1) coming into contact with
plant; and (2) structural defects. In China, for example, there were 88,
and 130 accidents related to crane collapses in 2014 and 2013, re-
spectively [24,25]. Also, a considerable number of accidents were at-
tributable to insufficient inspection and condition assessments of phy-
sical structures (i.e., detection of the defects and damage such cracking,
spalling, defective joints, and corrosion) [31]. In Fig. 1, we present a
series of examples identifying unsafe behavior and conditions.

3.2. Data sources for safety monitoring

To mitigate safety risks in construction, both manual inspection and
digital technologies (i.e., deep learning and computer vision), have
been used to identify and monitor hazards. As a consequence, data is
recorded in various formats (e.g., safety reports, video, and photo-
graphs), which researchers have used for monitoring safety. For ex-
ample, Robinson et al. [32] utilized machine learning to map the causal
factors contributing to hazards from safety reports. While the extraction
of such factors provides us with knowledge (i.e., discrete facts) about
safety issues its assimilation to aid the understanding that is needed to
reduce their occurrence is absent as a no context is provided. If we are
to make any headway toward effectively embracing AI and realizing its
benefits in construction, we need to provide a context, so that knowl-
edge and understanding are coupled. In this instance, the challenge
centers around the fusion of data with images/videos. Drawing on de-
velopments in AI and computer science that have fused different types
of data (e.g., text) with image/video to better understand the nature of
problem [33,34], we suggest that the use of safety reports, non-visual
sensors in conjunction with deep learning and computer vision can
provide an effective means for monitoring safety on-site.

3.3. Framework of computer vision-based for safety

To build an automatic computer vision-based safety monitoring
system, we need to establish a data resource and then be able to analyze
it to identify patterns of behavior and emerging trends. As digital
technologies mature, they can be applied to create a robust learning
environment and combined with deep learning and computer vision to
aid the analysis of safety data to provide us with the understanding
needed to improve safety performance. In sum, embracing and fusing
digital technologies with deep learning and computer vision provides a
mechanism to create new solutions to automatically identify unsafe
behavior and conditions [9–11,35,36].

Considering the review presented above, we present in Fig. 2 a
framework to enable computer vision to be used to monitor safety. Our
framework combines both digital technologies and multiple aspects of
data fusion. In our proposed framework, the scope of digital technol-
ogies encompasses machine learning, building information models
(from now on referred to as model), ontology, AR/VR, and IoT.

4. Deep learning and computer vision for safety in construction

Our review of previous computer-vision research within the context
of safety aligns with our developed framework (Tables 1 and 2). In this
section, we provide an overview of the different deep learning and
computer vision approaches that have been developed and their re-
ported benefits.

4.1. Computer vision-based unsafe behavior recognition

With developments in deep learning, a plethora of approaches have
been developed and applied to examine unsafe behavior in construction
with computer vision [10,11,37]. As we noted above, deep learning and
computer vision research have focused on the three categories of unsafe
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behavior. Such research has tended to leverage algorithms (i.e., object
detection algorithms, object tracking, image classification, and activity
recognition) that have achieved good levels of performance from the
domain of computer science to extract knowledge and then are com-
pared with rules, guidelines, or expert experiences to identify unsafe
behavior. A notable study, for example, is the work of Fang et al. [11]
who combined computer vision with a Mask R-CNN to identify in-
dividuals and structural supports. This knowledge was used to identify
the unsafe behavior of individuals who had traversed structural sup-
ports and then determine the relationship between these objects.

We present in Table 1 a detailed summary of prior works on deep
learning and computer vision used to identify unsafe behavior and their
limitations. Despite the significant progress being made to identify

unsafe behavior using computer vision, several problems remain un-
resolved as we highlight in Table 1.

4.2. Identification of unsafe conditions using computer vision

Research focusing on the recognition of unsafe conditions using
computer vision has focused on the identification of a plant's location as
well as status and structural defects (Table 2). Several deep learning
and computer vision approaches have been developed to determine the
surface quality of external structures (e.g., cracks). For example, Cha
et al. [46] integrated computer vision with a CNN to detect cracks,
though without computing the defect features from two-dimensional
(2D) images. However, Cha et al.'s [46] approach achieved a detection

Fig. 1. Examples of (A) unsafe behavior; (B) unsafe plant; (C) structural defects.

Safety

Data Fusion

Unsafe behavior

Plant’s unsafe status

Structural defects

Images

Video Streams

Non-visual Sensors

Safety Reports

Digital Technologies

Ontology

AR/VR

BIM

IoT

Machine Learning

Multi-Images

Fig. 2. Integration of data fusion and digital technologies with safety.
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accuracy of 98% from the database that was created. Likewise, Xue and
Li [47] proposed a fully convolutional network (FCN) model to detect
cracks and leakages from 2D images for a shield tunnel and achieved a
detection accuracy of 95%.

While there has been a significant body of work undertaken to de-
termine the surface quality of structures (i.e., cracks), issues associated
with the identifying defective joints (e.g., grouting), for example, re-
main unresolved. Similarly, in the case of plant, there has been a
paucity of research that has focused on its location and status. This is
due to the difficulties associated with the identification of their me-
chanical parameters and the extraction of attributes.

5. Challenges of computer vision in construction

While there has been an array of attempts to automate the identi-
fication of hazards on construction sites, no fully automatic computer
vision-based system has yet been developed. We have however been
able to identify people not wearing their PPE, but unable to determine:
(1) the identity of a person not adhering to this requirement; and (2) if
PPE is appropriately used (e.g., the hook of safety harness not being
fixed to rail). Deep learning, however, can potentially provide us with
data analytics to be able to identify hazards in real-time automatically.
We next discuss the potential application and technical challenges of
deep learning algorithms, particularly CNNs, for safety management.

5.1. Applying computer vision in practice

Having an extensive and high-quality database of images of varying
types to engender a CNN's capacity to learn is a pre-requisite for
identifying hazards (i.e., miss detected, or low detection accuracy) and
ensuring the successful application of computer vision. However, the
absence of an adequately sized database is a significant obstacle that
stymies the use of computer vision for engendering effective safety
monitoring. In comparison with publicly available datasets in computer
science such as the ImageNet and Microsoft® Common Objects in
Context (COCO), those required for construction possess unique char-
acteristics that need to consider spatial conflicts, cluttered back-
grounds, occlusions, various poses and scales and the dynamic and
changing nature of its environment. In this case, many potential ha-
zards are out of a person's sight (i.e., they may be struck-by a plant or
equipment) and a structure's quality is not easy identified due to the
limitations of deep learning models in being able to predict previously
unobservable objects and extract concealed information using com-
puter vision.

Due to the limited availability of datasets, researchers have had to
use relatively small samples of images to undertake their experimental
works to identify hazards. The use of small datasets has resulted in
reported evaluation metrics such as precision, recall, and accuracy
being problematic to compare and contrast with other approaches. Due
to the variability in the quality of datasets used for training and testing,
it is difficult to determine the validity and reliability of results that have
been posted in the extant literature. Thus, there is a need for robust and
objective evaluation criteria that we can use to compare and contrast
various computer vision approaches that are promulgated for managing
safety.

5.2. Technical challenges

As we note above, there has been a tendency of computer vision
studies to rely on the use of small databases and then use supervised
approaches to identify unsafe behavior. The corollary being weak
generalizations due to: (a) the assumption that training and testing
databases belong to the same distribution; and (b) machine learning
being used to train small databases, which limits inter and intra-class
variability. Consequently, this hinders their ability to accurately re-
cognize unsafe behavior and enable generalizations to be made to

different datasets [52]. The techniques of transfer learning and data
augmentations (i.e., crop, flips, and random rotation) however can be
applied to overcome the issues associated with the accuracy and re-
liability with using small training database.

Deep learning models learn correlations between input and output
features but are unable to characterize causality. Despite this, we need
to understand the interactions between people's behaviors and their
corresponding working situations to be able to contextualize the in-
formation that often surrounds hazards that materialize on construction
sites. For example, behavior-based safety (BBS) has been used to ob-
serve and identify people's unsafe actions. Then, feedback is directly
provided to those who have committed an unsafe act with the intent of
modifying their future behavior [36,53–55].

While the use of deep learning is capable of recognizing hazards, it
is essential to realize that these approaches focus on addressing specific
tasks related to safety. As a result, this poses a significant problem, as no
single approach can be used to identify a range of unsafe behaviors,
which renders it a costly and time-consuming process to implement
computer vision in practice. We, therefore, need to develop new algo-
rithms and train them to be able to detect a wide range of common
unsafe behaviors and conditions that materialize while work is being
performed on-site.

Deep learning models are akin to being a ‘black box’ and thus are
opaque [57,65,77]. Strides have been made to address this issue by
visualizing the contributions of individual nodes in a complex network
using more than a million parameters. Ensuring the transparency of
deep learning remains unsolved [65]. As we are unable to determine
the exact features that have been extracted and learned from nodes,
then understanding how detection was made and identifying the
parameters that need to be adjusted to accurately detect hazards are
issues that need be addressed to justify the adoption of deep learning
[65].

6. Areas for future research in deep learning and computer vision

To address the above challenges and ensure computer vision can be
effectively and efficiently applied to monitor safety, we propose po-
tential areas for future research in accordance with our designed and
developed framework presented above.

6.1. Combining deep learning and computer vision with digital technologies

The computer vision approaches that have been developed in con-
struction tend to have low levels of information utilization and there-
fore require higher levels of accuracy to detect hazards. As safety reg-
ulations become more complicated, interdependent, and more stringent
due statutory requirements, prevailing computer vision approaches will
be unable to identify a range of unsafe behavior and conditions. If such
approaches are not able to accommodate changing regulatory require-
ments and the nuances of construction, then they will become re-
dundant.

6.1.1. Ontology and computer vision
To accommodate safety regulations, we suggest that ontology

should be integrated with computer vision approaches that are de-
signed and developed. Ontology is a formal conceptualization of
knowledge, which is a simplified view of a domain that describes ob-
jects, concepts, and relationships between them [60]. The purpose of an
ontology is to enable computer applications to represent and reason
knowledge efficiently. When combined with computer vision, objects
can be automatically detected and attributes extracted from images
(i.e., classes and geometry). With this in mind, a semantic computer
vision-based framework can be developed that comprises four proce-
dures: (1) ontological model of hazards (e.g., unsafe behavior and the
status of plant); (2) entity and attributes detection with computer vi-
sion; (3) extraction of spatial and temporal semantic-relationship from
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videos; and (4) reasoning data for hazard identification.
We suggest that a semantic model that integrates ontology and

computer vision can be used for hazard identification with deep
learning model, even when data is scarce. The combining of ontology
and computer vision not only relies on accurately detecting objects, but
also the use of the spatial-temporal relationship between them to reason
hazards.

Several studies have demonstrated that existing computer-vision
based approaches can satisfactorily detect a variety of objects [56],
which thus renders the proposed semantic approach to be potentially
beneficial without having a specific database for training.

6.1.2. Group with as-built visual data, as-planned model and IoT
We suggest that there is a need to develop a deep learning visual

analytics system for project performance based on an as-built three
dimensional (3D) semantic reconstruction model [58,59] and as-
planned’model using computer vision. In doing so, the system would be
able to provide an automatic and scalable method of producing quality
3D ‘as-built’ models from large amounts of images and video data from
various sources so that it can align with an ‘as-planned’ model. It would
also provide the ability to visualize safety related to situational
awareness and facilitate claim analysis and accident investigations. This
system would be able to use field snapshots or videos aligned with an
‘as-planned’ model for annotation, reporting, documentation, and
communication. In this system, computer vision would not only be used
to extract and identify objects and their attributes (i.e., distance and
classes) but also construct an ‘as-built’ 3D semantic model in real-time.
Simultaneously, sensors can be used to extract information (i.e., loca-
tions) from installed components' enabling data from the computer
vision detection results to be transformed via the IoT. Thus, data can be
stored and integrated within a 3D model of a constructed asset, which
can be updated continuously in real-time. In doing so, potential hazards
will be able to be identified in the model, with potential structural
defects or failures being able to be recognized.

6.1.3. As-built visual data, AR/VR, and building information models
AR applications have been extensively used in construction and

used to supplement either virtual or the real world and have been de-
veloped to [61]:

• retrieve information both during construction and facility manage-
ment for safety;

• visualize underground utilities, improve visual perception for ex-
cavation safety and subsurface utility inspection; and

• obtain real-time 3D operational instructions that are overlaid on the
actual site to assist assembly and other complex operations.

Prevailing AR-capabilities and mobile devices (e.g., Apple's ARKit
for iOS and Google's ARCore for Android) are sophisticated enough to
support our visualization applications identified [62]. There is a need to
enable a resource constraint mobile device to support the deep learning
powered analytics engine. A cloud-mobile hybrid or a pure mobile
method may be a solution to address the problem. An optimized deep-
learning algorithm, however, is needed to reduce the computing power
so that real-time information retrieval can be enabled within a mobile/
cloud computing environment.

6.2. Insight from multiple data fusion

Multiple data fusion is the process of integrating data from several
sources to produce more consistent, accurate, and useful information
than that can be provided by an individual supplier [63]. During con-
struction safety, data can be generated from a wide range of sources
(e.g., safety reports and non-visual sensors).

6.2.1. Utilizing video streams and multi-model fusion
Deep learning has generally been undertaken within a supervised

context where data is labeled, but there has been a distinct shift toward
using unsupervised models to improve the detection speed of objects as
well their accuracy and reliability. Based on developments that have
been made within the field of computer science for deep learning and
computer vision [64,66–68], we suggest that a self-taught deep
learning-based unsupervised learning approach can be used to identify
hazards using video streaming. Here video streams would act as inputs
into a deep learning model, which has a self-taught learning mechanism
with adjustable parameters to enable continuous self-training video
streams that form output frames for testing. This process would,
therefore, improve the ability to generalize a model's output. Systems
that are trained with videos can use each successive frame as a training
database, whereby the goal is to predict the next frame. For example, if
the goal is to detect hazards within a frame tn, then between t1 and tn-1
would be used for training model without the need for any human la-
beling. This process addresses not only the issues associated with lim-
ited training data but also the problem of assuming that the distribution
of training and testing database are identical.

In light of the numerous remote sensing image data resources that
are readily available, and have been utilized in various applications
[69–73], we suggest that these technologies can be fused to identify
hazards in construction as well automatically. Such sensing image data
includes, for example, by fusing thermal and 2D images, a person's
unsafe behavior can be identified such as smoking in construction as the
temperature of the cigarette is higher than its immediate environment.
Thus, it is easy to differentiate between cigarette and non-pothole using
the thermal imaging technique. Similarly, image channels (e.g., optical
images) fusion can improve the identification of hazards and provide
complementary visual information that is useful for deep learning
models to extract detailed information [74].

6.2.2. Alignment between computer vision and text reports
We can combine text and image data to enable a deep learning

model to reason and understand the nature of risk. Here, the combi-
nation of text reports and image data has two avenues for research:

1. Leveraging reports to improve the accuracy to identify unsafe behavior:
To enable computer vision to accurately identify hazards from
images, we can combine deep learning and computer vision to ex-
tract and encode images from feature representations (i.e., im-
portant regions), and then use Natural Language Processing tech-
niques to obtain feature presentations (e.g., words and semantic
relations). Finally, hazards can be retrieved and identified by using
image-sentence similarity; and

2. Automatic generation of safety reports from images: Prevailing on-site
safety inspections predominately are dependent on pen and paper to
record hazards that engineers observe, and then these handwritten
records are transferred into a computer system to generate safety
report. This manual process of transferring data, however, is a time-
consuming and error-prone process. With advances being made in
image caption algorithms [75,76], we can develop semantic image
captions that can enable hazard information to be automatically
described. This approach can assist site managers to automatically
generate risk reports rather than having to undertake site walks to
identify potential hazards.

6.2.3. Alignment between computer vision and non-visual sensor data
Data from numerous sensors positioned on a construction site can be

used to detect hazards. Different types of sensors have been used on
construction sites to collate safety data [27,78,79]. For example, loca-
tion sensors (i.e., Radio Frequency Identification and Global Positioning
Systems) can be used to identify those individuals entering dangerous
work areas [27]. Thus, we suggest that by fusing images obtained from
multiple non-visual sensors we can extend the range of hazards that
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deep learning-based computer vision can detect, which include identi-
fying:

• Unsafe behavior: Sensors (i.e., locations sensors, identity sensors) can
be used to acquire a person's coordinates and their identity [80,81].
Then, computer vision can be used to extract information (i.e., ob-
jects classes, activity, attributes) and 3D coordinates of objects
[56,74,83]. Two types of information are synchronously integrated
according to the coordinates obtained. An individual's unsafe be-
havior record can be recorded such as their actions, frequency of
events, and location, once this information is obtained, it can be
used for safety training;

• Unsafe plant: Sensors can be integrated to obtain mechanical para-
meters (e.g., bending moment and angle) of a crane during hoisting.
Then, using computer vision, we can identify the context and plant
that contribute to the presence of unsafe conditions; and

• Structural defects: Several researchers have used sensor data for
structural health monitoring determine the cause of defects [84,85].
Research has also combined computer vision and deep learning to
recognize defects from images. However, they have been unable to
determine the quality of the internal composition of a piece of civil
infrastructure (i.e., tunnel and bridge). Ground-penetrating radar
(GPR) is a geophysical approach that uses electromagnetic radiation
in the microwave band (UHF/VHF frequencies) of the radio spec-
trum and detects the reflected signals from subsurface structures.
Here, we suggest that a computed tomography (CT) system can be
developed by integrating radar images and deep learning-based
computer vision to extract information and diagnose the quality of
the internal structure.

7. Conclusions

Computer vision combined with deep learning provides the cap-
ability to automatically identify unsafe behavior and conditions on
construction sites and therefore can be used to improve safety perfor-
mance. Nonetheless, there remain several challenges that need to be
addressed before construction can directly benefit from technological
developments being made within the field of computer vision. In this
paper, a review that examines the use of computer vision and deep
learning for monitoring of unsafe behavior and conditions is conducted
to identify these challenges, which are a product of the dynamic and
complex nature of construction and the difficulties associated with ac-
quiring video surveillance data. More specifically, the dearth of data-
bases that can be used for training and testing deep learning models to
identify unsafe actions and conditions requires development to put in
place a foundation for the benefits of computer vision come to the fore.
Notwithstanding this limitation, we have proposed a robust enabling
framework for utilizing computer vision to improve safety performance
in construction. By being able to integrate state-of-the-art digital tech-
nologies and unify multiple data resources our robust computer vision-
based framework acts as a signpost for engendering future research in
the emergent and fertile area of deep-learning within the context of
safety.
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